Additive combinatorics in \mathbb{F}_p and the polynomial method

Éric Balandraud

Journées estivales de la Méthode Polynomiale

The Combinatorial Nullstellensatz

Theorem (Alon)

 \mathbb{K} a field and P a polynomial $\mathbb{K}[X_1,\ldots,X_d]$.

The Combinatorial Nullstellensatz

Theorem (Alon)

 \mathbb{K} a field and P a polynomial $\mathbb{K}[X_1, \dots, X_d]$. If $\deg(P) = \sum_{i=1}^d k_i$ and P has a non zero coefficient for $\prod_{i=1}^d X_i^{k_i}$,

The Combinatorial Nullstellensatz

Theorem (Alon)

 \mathbb{K} a field and P a polynomial $\mathbb{K}[X_1,\ldots,X_d]$. If $\deg(P) = \sum_{i=1}^d k_i$ and P has a non zero coefficient for $\prod_{i=1}^d X_i^{k_i}$, then whatever A_1,\ldots,A_d , subsets of \mathbb{K} such that $|A_i| > k_i$, there exists $(a_1,\ldots,a_d) \in A_1 \times \cdots \times A_d$ so that:

$$P(a_1,\ldots,a_d)\neq 0.$$

Another formulation

Theorem

 \mathbb{K} a field and P a polynomial $\mathbb{K}[X_1,\ldots,X_d]$. Let A_1,\ldots,A_d subsets of \mathbb{K} . Setting $g_i(X_i) = \prod_{a_i \in A_i} (X_i - a_i)$. If P vanishes on $A_1 \times \cdots \times A_d$, there exist $h_i \in \mathbb{K}[X_1,\ldots,X_d]$, with $\deg(h_i) \leqslant \deg(P) - \deg(g_i)$ such that:

$$P = \sum_{i=1}^{d} h_i g_i.$$

Three Addition Theorems in \mathbb{F}_p

- Cauchy-Davenport
- Dias da Silva-Hamidoune (Erdős-Heilbronn)
- Set of Subsums

Cauchy-Davenport

Theorem (Cauchy-Davenport - 1813, 1935) p a prime number, A and B two subsets of \mathbb{F}_p , then:

$$|A + B| \geqslant \min \{p, |A| + |B| - 1\}.$$

Cauchy-Davenport

Theorem (Cauchy-Davenport - 1813, 1935) p a prime number, A and B two subsets of \mathbb{F}_p , then:

$$|A + B| \ge \min \{p, 1 + (|A| - 1) + (|B| - 1)\}.$$

Cauchy-Davenport

Theorem (Cauchy-Davenport - 1813, 1935)

p a prime number, A and B two subsets of \mathbb{F}_p , then:

$$|A+B| \geqslant \min \{p, 1+(|A|-1)+(|B|-1)\}.$$

proof: If $A+B\subset C$, with $|C|=\min\{p-1,|A|+|B|-2\}$, the polynomial

$$\prod_{c\in C}(X+Y-c)$$

would vanish on $A \times B$ and the coefficient of $X^{|A|-1}Y^{|C|-|A|-1}$ is $\binom{|C|}{|A|-1} \neq 0$.

-Addition Theorems

└ Dias da Silva-Hamidoune

Dias da Silva-Hamidoune

Conjecture (Erdös-Heilbronn - 1964) p a prime number, $A \subset \mathbb{F}_p$, then:

$$|\{a_1 + a_2 \mid a_i \in A, \ a_1 \neq a_2\}| \geqslant \min\{p, 2|A| - 3\}$$

Dias da Silva-Hamidoune

Conjecture (Erdös-Heilbronn - 1964) p a prime number, $A \subset \mathbb{F}_p$, then:

$$|\{a_1 + a_2 \mid a_i \in A, \ a_1 \neq a_2\}| \geqslant \min\{p, 2(|A| - 2) + 1\}$$

Dias da Silva-Hamidoune

Conjecture (Erdös-Heilbronn - 1964)
$$p$$
 a prime number, $A \subset \mathbb{F}_p$, then:

Time number,
$$A \subset \mathbb{F}_p$$
, then:

$$|\{a_1 + a_2 \mid a_i \in A, \ a_1 \neq a_2\}| \geqslant \min\{p, 2(|A| - 2) + 1\}$$

Define:

$$h^{\wedge}A = \{a_1 + \cdots + a_h \mid a_i \in A, \ a_i \neq a_j\}$$

Dias da Silva-Hamidoune

Conjecture (Erdös-Heilbronn - 1964)

p a prime number, $A \subset \mathbb{F}_p$, then:

$$|\{a_1 + a_2 \mid a_i \in A, \ a_1 \neq a_2\}| \ge \min\{p, 2(|A| - 2) + 1\}$$

Define:

$$h^{\wedge}A = \{a_1 + \cdots + a_h \mid a_i \in A, \ a_i \neq a_j\}$$

Theorem (Dias da Silva, Hamidoune - 1994) Let p be a prime number and $A \subset \mathbb{F}_p$. Let $h \in [1, |A|]$, one has,

$$|h^{\wedge}A|\geqslant \min\{p,1+h(|A|-h)\}.$$

Proof: Setting $i_0 = \max\{0, h(|A| - h) - p + 1\}$, (h(|A| - h) - p + 1 < h). one considers the polynomial

$$(X_0+\cdots+X_{h-1})^{h(|A|-h)-i_0}\left(\prod_{0\leqslant i< j\leqslant h-1}(X_j-X_i)\right),$$

it has degree $h(|A| - h) - i_0 + \frac{h(h-1)}{2}$,

└ Dias da Silva-Hamidoune

Proof: Setting $i_0 = \max\{0, h(|A| - h) - p + 1\}$, (h(|A| - h) - p + 1 < h). one considers the polynomial

$$(X_0+\cdots+X_{h-1})^{h(|A|-h)-i_0}\left(\prod_{0\leqslant i< j\leqslant h-1}(X_j-X_i)\right),$$

it has degree $h(|A| - h) - i_0 + \frac{h(h-1)}{2}$, and the sets:

$$A_{0} = \{a_{1}, \dots, a_{|A|-h}\}$$

$$A_{1} = \{a_{1}, \dots, a_{|A|-h}, a_{|A|-h+1}\}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_{i_{0}-1} = \{a_{1}, \dots, a_{|A|-h}, \dots, a_{|A|-h+i_{0}-1}\}$$

$$A_{i_{0}} = \{a_{1}, \dots, a_{|A|-h}, \dots, a_{|A|-h+i_{0}-1}, a_{|A|-h+i_{0}}, a_{|A|-h+i_{0}+1}\}$$

$$\vdots \qquad \vdots$$

$$A_{h-2} = \{a_{1}, \dots, a_{|A|-1}\}$$

$$A_{h-1} = \{a_{1}, \dots, a_{|A|-1}, a_{|A|-1}, a_{|A|-1}, a_{|A|-1}, a_{|A|-1}, a_{|A|-1}, a_{|A|-1}\}$$

Set of Subsums

Let A be a subset of \mathbb{F}_p , define

$$\Sigma(A) = \left\{ \sum_{x \in I} x \mid \emptyset \subset I \subset A \right\}$$

Set of Subsums

Let A be a subset of \mathbb{F}_p , define

$$\Sigma^*(A) = \left\{ \sum_{x \in I} x \mid \emptyset \subsetneq I \subset A \right\}$$

Set of Subsums

Let A be a subset of \mathbb{F}_p , define

$$\Sigma^*(A) = \left\{ \sum_{x \in I} x \mid \emptyset \subsetneq I \subset A \right\}$$

Let
$$A \subset \mathbb{F}_p$$
. If $A \cap (-A) = \emptyset$, then

$$|\Sigma(A)|\geqslant \min\left\{\frac{p+3}{2}, \frac{|A|(|A|+1)}{2}\right\}.$$

Theorem (B.)

p a odd prime number, $A \subset \mathbb{F}_p$, such that $A \cap (-A) = \emptyset$. One has

$$|\Sigma(\textit{A})| \ \geqslant \min \left\{ \textit{p}, 1 + \frac{|\textit{A}|(|\textit{A}|+1)}{2} \right\},$$

└─Set of Subsums

Theorem (B.)

p a odd prime number, $A \subset \mathbb{F}_p$, such that $A \cap (-A) = \emptyset$. One has

$$|\Sigma(A)| \ge \min \left\{ p, 1 + \frac{|A|(|A|+1)}{2} \right\},$$

$$|\Sigma^*(A)| \ge \min \left\{ p, \frac{|A|(|A|+1)}{2} \right\}.$$

Theorem (B.)

p a odd prime number, $A \subset \mathbb{F}_p$, such that $A \cap (-A) = \emptyset$. One has

$$|\Sigma(A)| \geqslant \min \left\{ p, 1 + \frac{|A|(|A|+1)}{2} \right\},$$

 $|\Sigma^*(A)| \geqslant \min \left\{ p, \quad \frac{|A|(|A|+1)}{2} \right\}.$

Conjecture (Selfridge - 1976)

p a prime number, A a maximal zerosum free subset of $\mathbb{Z}/p\mathbb{Z}$, then:

$$|A| = \max\left\{k \mid \frac{k(k+1)}{2} < p\right\}.$$

└─Set of Subsums

Theorem (B.)

p a odd prime number, $A \subset \mathbb{F}_p$, such that $A \cap (-A) = \emptyset$. One has

$$|\Sigma(A)| \ge \min \left\{ p, 1 + \frac{|A|(|A|+1)}{2} \right\},$$

$$|\Sigma^*(A)| \ge \min \left\{ p, \frac{|A|(|A|+1)}{2} \right\}.$$

Theorem (B.)

p a odd prime number, $A \subset \mathbb{F}_p$, such that $A \cap (-A) = \emptyset$. One has

$$|\Sigma(A)| \ge \min \left\{ p, 1 + \frac{|A|(|A|+1)}{2} \right\},$$

$$|\Sigma^*(A)| \ge \min \left\{ p, \frac{|A|(|A|+1)}{2} \right\}.$$

Denote $A = \{2a_1, ..., 2a_d\}$.

$$\Sigma(A) = \sum_{i \in [1,d]} \{0,2a_i\} = \left(\sum_{i \in [1,d]} a_i\right) + \underbrace{\sum_{i \in [1,d]} \{-a_i,a_i\}}_{d \text{ terms}}.$$

└Addition Theorems └Set of Subsums

Let
$$i_0 = \max\{0, \frac{d(d+1)}{2} - p + 1\}$$
, one has $t = \frac{d(d+1)}{2} - i_0 = \min\{\frac{d(d+1)}{2}, p - 1\}$

$$(X_0+\cdots+X_{d-1})^{\mathbf{t}}\left(\prod_{0\leqslant i< j\leqslant d-1}(X_j^2-X_i^2)\right)$$

Let
$$i_0 = \max\{0, \frac{d(d+1)}{2} - p + 1\}$$
, one has $t = \frac{d(d+1)}{2} - i_0 = \min\{\frac{d(d+1)}{2}, p - 1\}$
$$(X_0 + \dots + X_{d-1})^t \left(\prod_{0 \leqslant i < j \leqslant d - 1} (X_j^2 - X_i^2)\right)$$

$$A_0 = \{a_1, \dots, a_d\}$$

$$A_1 = \{a_1, \dots, a_d, -a_1\}$$

$$\vdots \qquad \dots$$

$$A_{i_0-1} = \{a_1, \dots, a_d, -a_1, \dots, -a_{i_0-1}\}$$

$$A_{i_0} = \{a_1, \dots, a_d, -a_1, \dots, -a_{i_0-1}, -a_{i_0}, -a_{i_0+1}\}$$

$$\vdots \qquad \dots$$

 $,-a_d\}$.

Let
$$i_0 = \max\{0, \frac{d(d+1)}{2} - p + 1\}$$
, one has $t = \frac{d(d+1)}{2} - i_0 = \min\{\frac{d(d+1)}{2}, p - 1\}$
$$(X_0 + \dots + X_{d-1})^t \left(\prod_{0 \leqslant i < j \leqslant d-1} (X_j^2 - X_i^2)\right)$$

$$A_0 = \{a_1, \dots, a_d\}$$

$$\begin{array}{lll}
A_{0} & = \{a_{1}, \dots, a_{d}\} \\
A_{1} & = \{a_{1}, \dots, a_{d}, -a_{1}\} \\
\vdots & & \ddots \\
A_{i_{0}-1} & = \{a_{1}, \dots, a_{d}, -a_{1}, \dots, -a_{i_{0}-1}\} \\
A_{i_{0}} & = \{a_{1}, \dots, a_{d}, -a_{1}, \dots, -a_{i_{0}-1}, -a_{i_{0}}, -a_{i_{0}+1}\} \\
\vdots & & \ddots \\
A_{d-1} & = \{a_{1}, \dots, a_{d}, -a_{1}, \dots, -a_{d}\}.
\end{array}$$

└─Set of Subsums

$$(X_0+\cdots+X_{d-1})^t\left(\prod_{0\leqslant i< j\leqslant d-1}\left(X_j^2-X_i^2\right)\right)$$

└─ Set of Subsums

$$(X_0 + \dots + X_{d-1})^t \left(\prod_{0 \leqslant i < j \leqslant d-1} (X_j^2 - X_i^2) \right)$$

$$= \left(\sum_{\substack{(t_0, \dots, t_{d-1}) \\ \sum_{i=0}^{d-1} t_i = t}} \frac{t!}{\prod_{i=0}^{d-1} t_i!} \prod_{i=0}^{d-1} X_i^{t_i} \right) \begin{vmatrix} 1 & X_0^2 & \dots & X_0^{2(d-1)} \\ 1 & X_1^2 & \dots & X_1^{2(d-1)} \\ \vdots & \vdots & & \vdots \\ 1 & X_{d-1}^2 & \dots & X_{d-1}^{2(d-1)} \end{vmatrix}$$

└─ Set of Subsums

$$(X_0 + \dots + X_{d-1})^t \left(\prod_{0 \leqslant i < j \leqslant d-1} (X_j^2 - X_i^2) \right)$$

$$= \left(\sum_{\substack{(t_0, \dots, t_{d-1}) \\ \sum_{i=0}^{d-1} t_i = t}} \frac{t!}{\prod_{i=0}^{d-1} t_i!} \prod_{i=0}^{d-1} X_i^{t_i} \right) \left(\sum_{\sigma \in \mathfrak{S}_d} sign(\sigma) \prod_{i=0}^{d-1} X_i^{2\sigma(i)} \right)$$

Addition Theorems

└─Set of Subsums

$$(X_0 + \dots + X_{d-1})^t \left(\prod_{0 \leqslant i < j \leqslant d-1} (X_j^2 - X_i^2) \right)$$

$$= t! \sum_{\sigma \in \mathfrak{S}_d} sign(\sigma) \sum_{\substack{(t_0, \dots, t_{d-1}) \\ \sum_{i=0}^{d-1} t_i = t}} \frac{1}{\prod_{i=0}^{d-1} t_i!} \prod_{i=0}^{d-1} X_i^{t_i + 2\sigma(i)}$$

-Addition Theorems

└Set of Subsums

$$(X_{0} + \dots + X_{d-1})^{t} \left(\prod_{0 \leqslant i < j \leqslant d-1} (X_{j}^{2} - X_{i}^{2}) \right)$$

$$= t! \sum_{\sigma \in \mathfrak{S}_{d}} sign(\sigma) \sum_{\substack{(b_{0}, \dots, b_{d-1}) \\ 0 \leqslant b_{i} - 2\sigma(i) \leqslant t \\ \sum_{i=0}^{d-1} b_{i} = t + d(d-1)}} \frac{1}{\prod_{i=0}^{d-1} (b_{i} - 2\sigma(i))!} \prod_{i=0}^{d-1} X_{i}^{b_{i}}$$

LAddition Theorems

$$(X_{0} + \dots + X_{d-1})^{t} \left(\prod_{0 \leq i < j \leq d-1} (X_{j}^{2} - X_{i}^{2}) \right)$$

$$= \sum_{\substack{(b_{0}, \dots, b_{d-1}) \\ \sum_{i=0}^{d-1} b_{i} = t + d(d-1) \\ \max\{b_{i}\} < p}} \left(\frac{t! \prod_{i=0}^{d-1} (2i)!}{\prod_{i=0}^{d-1} b_{i}!} \left(\sum_{\sigma \in \mathfrak{S}_{d}} sign(\sigma) \prod_{i=0}^{d-1} \binom{b_{i}}{2\sigma(i)} \right) \right) \prod_{i=0}^{d-1} X_{i}^{b_{i}} + S_{p}$$

$$(X_0 + \dots + X_{d-1})^t \left(\prod_{0 \leqslant i < j \leqslant d-1} (X_j^2 - X_i^2) \right)$$

$$= \sum_{\substack{(b_0, \dots, b_{d-1}) \\ \sum_{i=0}^{d-1} b_i = t + d(d-1) \\ \max\{b_i\} < p}} \left(\frac{t! \prod_{i=0}^{d-1} (2i)!}{\prod_{i=0}^{d-1} b_i!} \left(\frac{b_0, b_1, \dots, b_{d-1}}{0, 2, \dots, 2(d-1)} \right) \right) \prod_{i=0}^{d-1} X_i^{b_i} + S_p$$

$$(X_{0} + \dots + X_{d-1})^{t} \left(\prod_{\substack{0 \leq i < j \leq d-1}} (X_{j}^{2} - X_{i}^{2}) \right)$$

$$= \sum_{\substack{(b_{0}, \dots, b_{d-1}) \\ \sum_{i=0}^{d-1} b_{i} = t + d(d-1) \\ \max\{b_{i}\} < p}} \left(\frac{t! \prod_{i=0}^{d-1} (2i)!}{\prod_{i=0}^{d-1} b_{i}!} \left(\begin{array}{c} b_{0}, b_{1}, \dots, b_{d-1} \\ 0, 2, \dots, 2(d-1) \end{array} \right) \right) \prod_{i=0}^{d-1} X_{i}^{b_{i}} + S_{p}$$

It suffices to prove that the following binomial determinant is non zero:

$$D_{d,i_0} = \begin{pmatrix} d-1, & d, & \ldots, & d-2+i_0, & d+i_0, & \ldots, & 2d-1 \\ 0, & 2, & \ldots, & 2(i_0-1), & 2i_0, & \ldots, & 2(d-1) \end{pmatrix}.$$

Binomial Determinants

$$\left(\begin{array}{c}a_1,\ldots,a_d\\b_1,\ldots,b_d\end{array}\right) = \left|\begin{array}{cccc}\binom{a_1}{b_1} & \binom{a_1}{b_2} & \cdots & \binom{a_1}{b_d}\\\binom{a_2}{b_1} & \binom{a_2}{b_2} & \cdots & \binom{a_2}{b_d}\\\vdots & \vdots & & \vdots\\\binom{a_d}{b_1} & \binom{a_d}{b_2} & \cdots & \binom{a_d}{b_d}\end{array}\right|.$$

Binomial Determinants

$$\begin{pmatrix} a_1, \dots, a_d \\ b_1, \dots, b_d \end{pmatrix} = \begin{pmatrix} \binom{a_1}{b_1} & \binom{a_1}{b_2} & \dots & \binom{a_1}{b_d} \\ \binom{a_2}{b_1} & \binom{a_2}{b_2} & \dots & \binom{a_2}{b_d} \\ \vdots & \vdots & & \vdots \\ \binom{a_d}{b_1} & \binom{a_d}{b_2} & \dots & \binom{a_d}{b_d} \end{pmatrix} \,.$$

$$D_{n,h,i} = \begin{pmatrix} n-h-1, n-h, \dots, n-h+i-2, n-h+i, \dots, n-1 \\ 0, 1, \dots, (i-1), i, \dots, (h-1) \end{pmatrix}$$

$$D_{d,i} = \begin{pmatrix} d-1, d, \dots, d-2+i, d+i, \dots, 2d-1 \\ 0, 2, \dots, 2(i-1), 2i, \dots, 2(d-1) \end{pmatrix}.$$

Addition Theorems

☐Binomial Determinants

$$D_{n,h,i}=\binom{h}{i},$$

This proves Dias da Silva-Hamidoune Theorem.

$$D_{n,h,i}=\binom{h}{i},$$

This proves Dias da Silva-Hamidoune Theorem.

Proposition

Let $d \geqslant 1$, one has:

$$D_{d,0} = 2^{d(d-1)/2},$$

 $D_{d,d} = 2^{(d-1)(d-2)/2}.$

$$D_{n,h,i}=\binom{h}{i},$$

This proves Dias da Silva-Hamidoune Theorem.

Proposition

Let $d \geqslant 1$, one has:

$$D_{d,0} = 2^{d(d-1)/2},$$

 $D_{d,d} = 2^{(d-1)(d-2)/2}.$

$$D_{d,i} = 2^{d-1} \frac{d-1}{d-2+i} D_{d-1,i-1} + 2^{d-1} \frac{d-1}{d-1+i} D_{d-1,i}.$$

$$D_{n,h,i}=\binom{h}{i},$$

This proves Dias da Silva-Hamidoune Theorem.

Proposition

Let $d \geqslant 1$, one has:

$$D_{d,0} = 2^{d(d-1)/2},$$

 $D_{d,d} = 2^{(d-1)(d-2)/2}.$

$$D_{d,i} = 2^{d-1} \frac{d-1}{d-2+i} D_{d-1,i-1} + 2^{d-1} \frac{d-1}{d-1+i} D_{d-1,i}.$$

$$D_{d,i} = 2^{\frac{d(d-1)}{2}-i} \binom{d}{i} \frac{d+i}{d}.$$

Three Additive results on sequences in \mathbb{F}_p

- Erdős-Ginzburg-Ziv
- Snevily's conjecture (Arsovsky)
- Nullstellensatz for sequences

Erdős-Ginzburg-Ziv

The permanent Lemma

Theorem (Alon - 1999)

K a field, A an $n \times n$ matrix with non zero permanent, $b \in K^n$. If one considers some sets S_i , i = 1...n, $|S_i| = 2$. There exists $s = (s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$, such that As and b are coordoninatewise distincts.

Additive results on sequences

Erdős-Ginzburg-Ziv

The permanent Lemma

Theorem (Alon - 1999)

K a field, A an $n \times n$ matrix with non zero permanent, $b \in K^n$. If one considers some sets S_i , i=1..n, $|S_i|=2$. There exists $s=(s_1,\ldots,s_n)\in S_1\times\cdots\times S_n$, such that As and b are coordoninatewise distincts.

proof: The polynomial

$$\prod_{i=1}^n \left(\sum_{j=1}^n a_{i,j} X_j - b_i \right)$$

has degree n and the coefficient of $\prod_{i=1}^{n} X_i$ is $Per(A) \neq 0$.

```
Theorem (Erdős Ginzburg Ziv - 1961)
```

G abelian finite group, |G| = n. Whathever $(g_1, g_2, \dots, g_{2n-1})$ elements of G. There exists a zerosum subsequence of length n.

Theorem (Erdős Ginzburg Ziv - 1961) G abelian finite group, |G| = n. Whathever $(g_1, g_2, \dots, g_{2n-1})$ elements of G. There exists a zerosum subsequence of length n. In [0,p-1], $\bar{g}_1 \leq \bar{g}_2 \leq \dots \leq \bar{g}_{2p-1}$.

Theorem (Erdős Ginzburg Ziv - 1961)

G abelian finite group, |G| = n. Whathever $(g_1, g_2, \dots, g_{2n-1})$ elements of G. There exists a zerosum subsequence of length n.

In [0,p-1],
$$\bar{g}_1 \leqslant \bar{g}_2 \leqslant \cdots \leqslant \bar{g}_{2p-1}$$
.

▶ If $g_i = g_{i+p-1}$, one has p equal elements.

Theorem (Erdős Ginzburg Ziv - 1961)

G abelian finite group, |G| = n. Whathever $(g_1, g_2, \dots, g_{2n-1})$ elements of G. There exists a zerosum subsequence of length n.

In [0,p-1],
$$\bar{g}_1\leqslant \bar{g}_2\leqslant\cdots\leqslant \bar{g}_{2p-1}$$
.

- ▶ If $g_i = g_{i+p-1}$, one has p equal elements.
- ▶ Otherwise, one considers the $(p-1) \times (p-1)$ matrix with only 1's, its permanent is $(p-1)! \neq 0$. Define $S_i = \{g_i, g_{i+p-1}\}$, for $i \in [1, p-1]$, of cardinality 2, and b containing all values but $-g_{2p-1}$.

Additive results on sequences

└Snevily's conjecture

Snevily's Conjecture

G a finite group of odd order.

 a_1, \ldots, a_k, k distinct elements and b_1, \ldots, b_k, k distincts elements.

then there exists a permutation π of [1,k] such that

$$a_1 + b_{\pi(1)}, \dots, a_k + b_{\pi(k)}$$
 are pairwise distincts.

Snevily's conjecture

Snevily's Conjecture

G a finite group of odd order.

 a_1, \ldots, a_k , k distinct elements and b_1, \ldots, b_k , k distincts elements.

then there exists a permutation π of [1, k] such that

$$a_1 + b_{\pi(1)}, \dots, a_k + b_{\pi(k)}$$
 are pairwise distincts.

•
$$G = \mathbb{Z}/p\mathbb{Z}$$
 (Alon - 2000)

Snevily's Conjecture

G a finite group of odd order.

 a_1, \ldots, a_k , k distinct elements and b_1, \ldots, b_k , k distincts elements. then there exists a permutation π of [1, k] such that

 $a_1 + b_{\pi(1)}, \dots, a_k + b_{\pi(k)}$ are pairwise distincts.

- ▶ $G = \mathbb{Z}/n\mathbb{Z}$ (Dasgupta, Karolyi, Serra, Szegedy 2001), in \mathbb{F}_{2^d} (with $n \mid 2^d 1$), g of order n in $\mathbb{F}_{2^d}^{\times}$, the polynomial:

$$P(X_1,\ldots,X_k) = \prod_{1 \leq j < i \leq k} (X_i - X_j) (\alpha_i X_i - \alpha_j X_j).$$

has degree k(k-1), where $\alpha_i = g^{b_i}$ and $A_1 = \cdots = A_k = \{g^{a_i} \mid i = 1..k\}.$

Snevily's Conjecture

G a finite group of odd order.

 a_1, \ldots, a_k , k distinct elements and b_1, \ldots, b_k , k distincts elements. then there exists a permutation π of [1, k] such that

$$a_1 + b_{\pi(1)}, \dots, a_k + b_{\pi(k)}$$
 are pairwise distincts.

- ▶ $G = \mathbb{Z}/n\mathbb{Z}$ (Dasgupta, Karolyi, Serra, Szegedy 2001), in \mathbb{F}_{2^d} (with $n \mid 2^d 1$), g of order n in $\mathbb{F}_{2^d}^{\times}$, the polynomial:

$$P(X_1,\ldots,X_k)=\prod_{1\leqslant j< i\leqslant k}(X_i-X_j)(\alpha_iX_i-\alpha_jX_j).$$

has degree k(k-1), where $\alpha_i = g^{b_i}$ and $A_1 = \cdots = A_k = \{g^{a_i} \mid i=1..k\}$. Coefficient of $\prod_{i=1}^k X_i^{k-1}$ is the Van der Monde permanent of the α_i 's. In \mathbb{F}_{2^d} , permanent and determinant are equal.

└─ Nullstellensatz for sequences

A question of Erdős

$$A = (a_1, \dots, a_\ell)$$
 a sequence of \mathbb{F}_p^{\times} .
 \mathcal{S}_A : set of $(0-1)$ -solutions of

$$a_1x_1+\cdots+a_\ell x_\ell=0.$$

$$\mathcal{S}_A = A^\perp \cap \{0,1\}^\ell$$

A question of Erdős

$$A = (a_1, \dots, a_\ell)$$
 a sequence of \mathbb{F}_p^{\times} .
 \mathcal{S}_A : set of $(0-1)$ -solutions of

$$a_1x_1+\cdots+a_\ell x_\ell=0.$$

$$\mathcal{S}_A = A^\perp \cap \{0,1\}^\ell$$

One considers:

$$\dim(A) = \dim(\langle S_A \rangle).$$

Additive results on sequences

└ Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, $A=(a_1,\ldots,a_\ell)$ a sequence of $\ell>p$ elements of \mathbb{F}_p^\times :

└ Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, $A=(a_1,\ldots,a_\ell)$ a sequence of $\ell>p$ elements of \mathbb{F}_p^{\times} :

$$\dim(A) = \ell - 1.$$

p a prime number, $A=(a_1,\ldots,a_\ell)$ a sequence of $\ell>p$ elements of \mathbb{F}_p^{\times} :

$$\dim(A) = \ell - 1.$$

Method:
$$S_A \subset S_B$$
, $I_\lambda = \{i \in [1, \ell] : b_i/a_i = \lambda\}$.

p a prime number, $A=(a_1,\ldots,a_\ell)$ a sequence of $\ell>p$ elements of \mathbb{F}_p^{\times} :

$$\dim(A) = \ell - 1.$$

Method: $S_A \subset S_B$, $I_\lambda = \{i \in [1,\ell] : b_i/a_i = \lambda\}$. $\lambda_1, \ldots, \lambda_d$ ratios associated to (A,B) and $S_i = (a_j : j \in I_{\lambda_i})$ and $\Sigma_i = \Sigma(S_i)$.

p a prime number, $A=(a_1,\ldots,a_\ell)$ a sequence of $\ell>p$ elements of \mathbb{F}_p^{\times} :

$$\dim(A) = \ell - 1.$$

Method: $S_A \subset S_B$, $I_\lambda = \{i \in [1,\ell] : b_i/a_i = \lambda\}$. $\lambda_1, \ldots, \lambda_d$ ratios associated to (A,B) and $S_i = (a_j : j \in I_{\lambda_i})$ and $\Sigma_i = \Sigma(S_i)$. The polynomial

$$P(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),\,$$

vanishes on $\prod_{i=1}^{d} \Sigma_{i}$, coefficient of $\prod X_{i}^{t_{i}}$ is $c \sum \lambda_{i} t_{i}$.

Additive results on sequences

└─ Nullstellensatz for sequences

Theorem (B.-Girard) p a prime number, $A = (a_1, \ldots, a_p)$ a sequence of p elements of \mathbb{F}_p^{\times} :

└ Nullstellensatz for sequences

Theorem (B.-Girard)

p a prime number, $A=(a_1,\ldots,a_p)$ a sequence of p elements of \mathbb{F}_p^{\times} :

$$dim(A) = 1,$$

$$(a_1, \ldots, a_p) = (r, \ldots, r).$$

└ Nullstellensatz for sequences

Theorem (B.-Girard)

$$dim(A) = 1,$$

$$(a_1, \ldots, a_p) = (r, \ldots, r).$$

▶
$$dim(A) = p - 2$$
, $\exists t \in [1, p - 3]$,

$$(a_{\sigma(1)},\ldots,a_{\sigma(p)})=(\underbrace{r,\ldots,r}_t,\underbrace{-r,\ldots,-r}_{p-2-t},-(t+1)r,-(t+1)r).$$

p a prime number, $A=(a_1,\ldots,a_p)$ a sequence of p elements of \mathbb{F}_p^{\times} :

$$dim(A) = 1,$$

$$(a_1, \ldots, a_p) = (r, \ldots, r).$$

▶
$$dim(A) = p - 2$$
, $\exists t \in [1, p - 3]$,

$$(a_{\sigma(1)},\ldots,a_{\sigma(p)})=(\underbrace{r,\ldots,r}_t,\underbrace{-r,\ldots,-r}_{p-2-t},-(t+1)r,-(t+1)r).$$

▶
$$dim(A) = p - 1$$
.

$$P(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),\,$$

vanishes on $\prod_{i=1}^{d} \Sigma_{i}$, the coefficient of $\prod X_{i}^{t_{i}}$ is $c \sum \lambda_{i} t_{i}$.

$$P(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),\,$$

vanishes on $\prod_{i=1}^{d} \Sigma_{i}$, the coefficient of $\prod X_{i}^{t_{i}}$ is $c \sum \lambda_{i} t_{i}$.

$$\sum_{i=1}^d (|\Sigma_i|-1) \geq p$$

$$P(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),\,$$

vanishes on $\prod_{i=1}^{d} \Sigma_{i}$, the coefficient of $\prod X_{i}^{t_{i}}$ is $c \sum \lambda_{i} t_{i}$.

$$\sum_{i=1}^{d} (|\Sigma_i| - 1) \ge p$$

▶ If $\sum (|\Sigma_i| - 1) = p$, one has:

$$\sum \lambda_i(|\Sigma_i|-1)=0$$

$$P(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),$$

vanishes on $\prod_{i=1}^{d} \Sigma_{i}$, the coefficient of $\prod X_{i}^{t_{i}}$ is $c \sum \lambda_{i} t_{i}$.

$$\sum_{i=1}^d (|\Sigma_i| - 1) \ge p$$

▶ If $\sum (|\Sigma_i| - 1) = p$, one has:

$$\sum \lambda_i(|\Sigma_i|-1)=0$$

▶ And $|\Sigma_i| - 1 = |S_i|$, Σ_i arithmetic progression.

Additive results on sequences

└─ Nullstellensatz for sequences

$$i_0, j_0 \in [1, d] \text{ and } r_{i_0} \in S_{i_0}$$

$$\Sigma'_{i_0} = \Sigma(S_{i_0} \setminus (r_{i_0})), \ \Sigma'_{j_0} = \Sigma(S_{j_0} \cup (r_{i_0})) = \Sigma_{j_0} + \{0, r_{i_0}\}$$

Additive results on sequences

Nullstellensatz for sequences

$$i_0, j_0 \in [1,d]$$
 and $r_{i_0} \in S_{i_0}$
$$\Sigma'_{i_0} = \Sigma(S_{i_0} \setminus (r_{i_0})), \ \Sigma'_{i_0} = \Sigma(S_{j_0} \cup (r_{i_0})) = \Sigma_{j_0} + \{0,r_{i_0}\}$$

$$Q_{i_0,j_0}(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\sum_{i=1}^d \lambda_i X_i - \chi\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),$$

vanishes on
$$\prod_{i=1}^{d} \Sigma_{i}'$$
, $\chi = (\lambda_{j_0} - \lambda_{i_0}) r_{i_0}$.

└─ Nullstellensatz for sequences

$$i_0, j_0 \in [1,d] ext{ and } r_{i_0} \in S_{i_0}$$

$$\Sigma'_{i_0} = \Sigma(S_{i_0} \smallsetminus (r_{i_0})), \ \Sigma'_{j_0} = \Sigma(S_{j_0} \cup (r_{i_0})) = \Sigma_{j_0} + \{0, r_{i_0}\}$$

$$Q_{i_0,j_0}(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\sum_{i=1}^d \lambda_i X_i - \chi\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),$$

vanishes on
$$\prod_{i=1}^{d} \Sigma_{i}'$$
, $\chi = (\lambda_{j_0} - \lambda_{i_0}) r_{i_0}$. $|\Sigma_{i_0}'| = |\Sigma_{i_0}| - 1$ et $|\Sigma_{i_0}'| \ge |\Sigma_{j_0}| + 2$

└─ Nullstellensatz for sequences

$$egin{aligned} i_0, j_0 &\in [1,d] \ ext{and} \ r_{i_0} &\in S_{i_0} \ \\ &\Sigma'_{i_0} &= \Sigma(S_{i_0} \smallsetminus (r_{i_0})), \ \Sigma'_{j_0} &= \Sigma(S_{j_0} \cup (r_{i_0})) = \Sigma_{j_0} + \{0,r_{i_0}\} \end{aligned}$$

$$Q_{i_0,j_0}(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\sum_{i=1}^d \lambda_i X_i - \chi\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),$$

vanishes on
$$\prod_{i=1}^{d} \Sigma_{i}'$$
, $\chi = (\lambda_{j_0} - \lambda_{i_0}) r_{i_0}$. $|\Sigma_{i_0}'| = |\Sigma_{i_0}| - 1$ et $|\Sigma_{j_0}'| \ge |\Sigma_{j_0}| + 2$
For $t_{i_0} = |\Sigma_{i_0}| - 2$, $t_{j_0} = |\Sigma_{j_0}| + 1$, one has $t_i \le |\Sigma_i'| - 1$, the coefficient is

$$i_0,j_0\in[1,d]$$
 and $r_{i_0}\in S_{i_0}$

$$\Sigma_{i_0}' = \Sigma(S_{i_0} \setminus (r_{i_0})), \ \Sigma_{j_0}' = \Sigma(S_{j_0} \cup (r_{i_0})) = \Sigma_{j_0} + \{0, r_{i_0}\}$$

$$Q_{i_0,j_0}(X_1,\ldots,X_d) = \left(\sum_{i=1}^d \lambda_i X_i\right) \left(\sum_{i=1}^d \lambda_i X_i - \chi\right) \left(\left(\sum_{i=1}^d X_i\right)^{p-1} - 1\right),$$

vanishes on $\prod_{i=1}^d \Sigma_i'$, $\chi = (\lambda_{i_0} - \lambda_{i_0}) r_{i_0}$. $|\Sigma_{i_0}'| = |\Sigma_{i_0}| - 1$ et $|\Sigma_{i_0}'| \geq |\Sigma_{i_0}| + 2$ For $t_{i_0} = |\Sigma_{i_0}| - 2$, $t_{i_0} = |\Sigma_{i_0}| + 1$, one has $t_i \leq |\Sigma_i'| - 1$, the

coefficient is

$$2(\lambda_{j_0}-\lambda_{i_0})^2-\sum_{i=1}^d\lambda_i^2(|\Sigma_i|-1)$$

$$b dim(A) = 1,$$

$$(a_{\sigma(1)},\ldots,a_{\sigma(p-1)})=(r,\ldots,r,2r).$$

- ightharpoonup dim(A) = 1, (r, ..., r, 2r).
- $b \dim(A) = p 4,$

$$(a_{\sigma(1)},\ldots,a_{\sigma(p-1)})=(\underbrace{r,\ldots,r}_{p-5},-r,2r,2r,2r).$$

$$ightharpoonup dim(A) = 1, (r, ..., r, 2r).$$

$$dim(A) = p - 4, (\underbrace{r, \ldots, r}_{p-5}, -r, 2r, 2r, 2r).$$

▶
$$\dim(A) = p - 3$$
, $\exists t \in [0, p - 6]$,

$$(a_{\sigma(1)},\ldots,a_{\sigma(p-1)})=(\underbrace{r,\ldots,r}_{t},\underbrace{-r,\ldots,-r}_{p-4-t},2r,-(t+3)r,-(t+3)r).$$

$$ightharpoonup dim(A) = 1, (r, ..., r, 2r).$$

▶ dim(A) =
$$p - 4$$
, $(r, ..., r, -r, 2r, 2r, 2r)$.

$$\dim(A) = \frac{p-3}{3}, \exists t \in [0, p-6], \\
\underbrace{(r, \ldots, r, \underbrace{-r, \ldots, -r}_{p-4-t}, 2r, -(t+3)r, -(t+3)r)}.$$

▶
$$\dim(A) = p - 3$$
, $\exists t \in [1, p - 4]$,

$$(a_{\sigma(1)},\ldots,a_{\sigma(p-1)})=\underbrace{(r,\ldots,r,\underbrace{-r,\ldots,-r},-(t+1)r,-(t+2)r)}_{t}.$$

$$ightharpoonup \dim(A) = 1, (r, ..., r, 2r).$$

$$\dim(A) = p - 4, (\underbrace{r, \ldots, r}_{n-5}, -r, 2r, 2r, 2r).$$

$$\dim(A) = \frac{p-3}{p}, \exists t \in [0, p-6], \\
\underbrace{(r, \dots, r, \underbrace{-r, \dots, -r}_{p-4-t}, 2r, -(t+3)r, -(t+3)r)}.$$

$$dim(A) = p - 3, \exists t \in [1, p - 4], \\ \underbrace{(r, \dots, r, \underbrace{-r, \dots, -r}_{p-3-t}, -(t+1)r, -(t+2)r)}.$$

$$p = 7$$
, dim(A) = $p - 3 = 4$,

$$(a_{\sigma(1)},\ldots,a_{\sigma(6)})=(-1,1,-2,2,-3,3).$$

- ightharpoonup dim(A) = 1, (r, ..., r, 2r).
- $\dim(A) = p 4, \ (\underbrace{r, \ldots, r}_{p-5}, -r, 2r, 2r, 2r).$
- $\dim(A) = \underset{t}{p} 3, \exists t \in [0, p 6], \\
 \underbrace{(r, \dots, r, \underbrace{-r, \dots, -r}_{p-4-t}, 2r, -(t+3)r, -(t+3)r)}.$
- $\dim(A) = \frac{p-3}{p-3}, \exists t \in [1, p-4], \\
 \underbrace{(r, \dots, r, -r, \dots, -r, -(t+1)r, -(t+2)r)}_{p-3-t}.$
- p = 7, dim(A) = p 3 = 4, (-1, 1, -2, 2, -3, 3).
- ightharpoonup dim(A) = p 2.